trsing’s diary

勉強、読んだ本、仕事で調べたこととかのメモ。

PRML 4章演習問題 4.4~4.7

4.3

わからん

4.4

クラス分離基準(4.22)w^{T}(m_{2}-m_{1})wに関して最大化すればw\propto(m_{2}-m_{1})となること示せ。


L=w^{T}(m_{2}-m_{1})+\lambda(w^{T}w-1)\\
\frac{\partial}{\partial w}L=m_{2}-m_{1}+\lambda 2w=0\\
w = -\frac{1}{2\lambda}(m_{2}-m_{1})\propto(m_{2}-m_{1})\\

4.5

(4.20),(4.23),(4.24)を使って(4.25)が(4.26)の形で書けることを示せ。


(m_{2}-m_{1})^{2}=(w^{T}m_{n}-w^{T}m_{2})(w^{T}m_{1}-w^{T}m_{2})^{T}=w^{T}(m_{1}-m_{2})(m_{2}-m_{1})^{T}w=w^{T}S_{B}w
\\
(y_{n}-m_{k})^{2}=(w^{T}x_{n}-w^{T}m_{k})(w^{T}x_{n}-w^{T}m_{k})^{T}=w^{T}(x_{n}-m_{k})(x_{n}-m_{k})^{T}w
\\
s_{k}^{2}=\sum_{n\in C_{k}}(y_{n}-m_{k})^{2}=w^{T}\sum_{n\in C_{k}}(x_{n}-m_{k})(x_{n}-m_{k})^{T}w
\\
s_{1}^{2}+s_{2}^{2}=w^{T}(\sum_{n\in C_{1}}(x_{n}-m_{1})(x_{n}-m_{1})^{T}+\sum_{n\in C_{2}}(x_{n}-m_{2})(x_{n}-m_{2})^{T})w=w^{T}S_{W}w

J(w)=\frac{(m_{2}-m_{1})^{2}}{s_{1}^{2}+s_{2}^{2}}=\frac{w^{T}S_{B}w}{w^{T}S_{W}w}

4.6

(4.27),(4.28),(4.34),(4.36)および4.1.5節で述べた目的値を使って(4.33)が(4.37)の形で書けることを示せ。

f:id:trsing:20181221231152j:plain

f:id:trsing:20181221231302j:plain

f:id:trsing:20181221231831j:plain

f:id:trsing:20181221231843j:plain

4.7

(4.59)が\sigma(-a)=1-\sigma(a)を満たすことを示せ。


\sigma(-a)=\frac{1}{1+\exp(a)}=\frac{1}{1+\exp(a)}\frac{\exp(-a)}{\exp(-a)}=\frac{\exp(-a)}{1+\exp(-a)}\\
\hspace{25pt}=\frac{1+\exp(-a)-1}{1+\exp(-a)}=1-\frac{1}{1+\exp(-a)}=1-\sigma(a)

逆関数\sigma^{-1}(y)=\ln{y/(1-y)}で与えられることを示せ


\sigma(\ln\frac{y}{1-y})=\frac{1}{1+\exp(-\ln\frac{y}{1-y})}
=\frac{1}{1+\exp(\ln\frac{1-y}{y})}
=\frac{1}{1+\frac{1-y}{y}}
=\frac{y}{y+1-y}=y